IMPLEMENTATION ON STUNTING DATA CLUSTERING OF TODDLERS USING K-MEDOIDS CLUSTERING ALGORITHM

Main Article Content

Puspita Maulana Arumsari
Umi Hayati
Gifthera Dwilestari

Abstract

The state of chronic malnutrition in toddlers as measured by the World Health Organization (WHO) standard in 2005, based on height for age, which is a combination of short and very short terms with a Z-score <- 2 standard deviations. The results of the Indonesian Nutrition Status Study (SSGI) of the Ministry of Health show that 24.5% of infants under 5 years old (toddlers) in West Java will experience stunting in 2021. Nearly a quarter of toddlers whose height is below the standard for their age. The data used in this study were obtained from the Ministry of Home Affairs' Bangda Action by monitoring the implementation of 8 convergence actions for stunting reduction interventions. The direction of this research refers to grouping data on the distribution of the number of stunting in the Regency and City of Cirebon based on data collection results in 2022. In this study, the data were processed by applying the K-Medoids clustering algorithm or called Partitioning Around Medoids (PAM) by using the partition clustering method for grouping a set of n objects into several k clusters. From the results of grouping with 3 clusters, the DBI value was -2.427, wherein in the high-level stunting cluster there were 102 villages. In contrast, the medium-level percentage cluster was 103 villages, and the low-level stunting percentage cluster was 241 villages. This research is expected to provide information to the government regarding the classification of stunting under five so that it can determine which villages still need treatment in reducing stunting.

Article Details

How to Cite
Arumsari, P. M., Umi Hayati, & Gifthera Dwilestari. (2023). IMPLEMENTATION ON STUNTING DATA CLUSTERING OF TODDLERS USING K-MEDOIDS CLUSTERING ALGORITHM. JURNAL ILMIAH BETRIK : Besemah Teknologi Informasi Dan Komputer, 14(1), 166-174. https://doi.org/10.36050/betrik.v14i1.521
Section
Articles

References

Choi, S. E., Kim, J., & Seo, D. (2022). Exploring Travel Patterns of Free-Floating E-Bike-Sharing Users Before and During COVID-19 Pandemic. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4014094
Dashboard Stunting. (n.d.). Retrieved February 7, 2023, from https://aksi.bangda.kemendagri.go.id/emonev/DashTop/index/4
Dona, D., & Rifqi, M. (2022). PENERAPAN METODE K-MEANS CLUSTERING UNTUK MENENTUKAN STATUS GIZI BAIK DAN GIZI BURUK PADA BALITA (STUDI KASUS KABUPATEN ROKAN HULU). Rabit : Jurnal Teknologi Dan Sistem Informasi Univrab, 7(2). https://doi.org/10.36341/rabit.v7i2.2171
Kartini, A. (2016). KEJADIAN STUNTING DAN KEMATANGAN USIA TULANG PADA ANAK USIA SEKOLAH DASAR DI DAERAH PERTANIAN KABUPATEN BREBES. Jurnal Kesehatan Masyarakat, 11(2). https://doi.org/10.15294/kemas.v11i2.4271
Nurhaeni, H., Badrin, S., Dinarti, D., Riasmini, M., & Riyanti, E. (2021). Kolaborasi Penanganan Stunting. Jurnal Health Sains, 2(5). https://doi.org/10.46799/jhs.v2i5.158
Pohan, H., Zarlis, M., Irawan, E., Okprana, H., & Pranayama, Y. (2021). Penerapan Algoritma K-Medoids dalam Pengelompokan Balita Stunting di Indonesia. JUKI : Jurnal Komputer Dan Informatika, 3(2). https://doi.org/10.53842/juki.v3i2.69
Rahmadhita, K. (2020). Permasalahan Stunting dan Pencegahannya. Jurnal Ilmiah Kesehatan Sandi Husada, 11(1). https://doi.org/10.35816/jiskh.v11i1.253
RISKESDAS. (2018). Kementerian Kesehatan Republik Indonesia. Kementerian Kesehatan RI, 1(1).
Wira, B., Budianto, A. E., & Wiguna, A. S. (2019). IMPLEMENTASI METODE K-MEDOIDS CLUSTERING UNTUK MENGETAHUI POLA PEMILIHAN PROGRAM STUDI MAHASIWA BARU TAHUN 2018 DI UNIVERSITAS KANJURUHAN MALANG. RAINSTEK : Jurnal Terapan Sains & Teknologi, 1(3). https://doi.org/10.21067/jtst.v1i3.3046

DB Error: Unknown column 'Array' in 'where clause'