ANALISIS SENTIMEN SERIKAT PEKERJA PERTAMINA TOLAK AHOK PADA MEDIA SOSIAL YOUTUBE MENGGUNAKAN ALGORITMA NAIVE BAYES

Main Article Content

Muhammad Soekarno Putra Putra
Sri Dharma Wati
Imam Solikin

Abstract

In this study, an analysis of public sentiment will be carried out on the news of the Pertamina workers union rejecting Ahok which was revealed through the social media network youtube on the KompasTV channel. On the news there were about 25000 comments containing harsh words and even hate speech, this news attracted a lot of comments, there were those who praised, criticized and insulted. Sentiment analysis is the process of classifying textual documents into two classes, namely positive and negative sentiment classes. The data used in this study amounted to 1000 comments consisting of 1000 training data or training data and 300 test data or testing data, the classification method used in this study was naive bayes. In this study, data collection using Rstudio tools and processed using the rapidminer studio tools, and get the accuracy of 98.00%. From some of the data that has been tested, there are some data that are predicted to be neutral, positive data and data that are predicted to be negative. From the precision class, the neutral prediction has a class value of 100.00%, the positive prediction has a class value of 80.00% and the negative prediction has a precision class value of 66.67%.

Article Details

How to Cite
Putra, M. S. P., Sri Dharma Wati, & Imam Solikin. (2021). ANALISIS SENTIMEN SERIKAT PEKERJA PERTAMINA TOLAK AHOK PADA MEDIA SOSIAL YOUTUBE MENGGUNAKAN ALGORITMA NAIVE BAYES. JURNAL ILMIAH BETRIK : Besemah Teknologi Informasi Dan Komputer, 12(2), 99-105. https://doi.org/10.36050/betrik.v12i2.219
Section
Articles

References

[1] Bachtiar, A. M. (2017, Januari 20). Data Management (Data Mining Klasifikasi). Diambil kembali dari SlideShare: https://www.slideshare.net/adfbipotter/data-management-data-mining-klasifikasi
[2] Edi Surya Negara, R. A. (2016). Analisis Data Twitter : Ekstraksi dan Analisis. INKOM.
[3] Chandra, E. (n.d.). YOUTUBE, CITRA MEDIA INFORMASI INTERAKTIF ATAU MEDIA PENYAMPAIAN ASPIRASI PRIBADI.
[4] Dwi Smaradahana Indra loka, d. B. (2017). Penerapan Text Mining untuk Melakukan Clustering Data Tweet Shopee Indonesia. JURNAL SAINS DAN SENI ITS.
[5] Fatty Faiqah, M. N. (2016). YOUTUBE SEBAGAI SARANA KOMUNIKASI BAGI. Jurnal Komunikasi KAREBA.
[6] Rifiana Arief, K. I. (2019). ANALISIS SENTIMEN TOPIK VIRAL DESA PENARI. Jurnal Ilmiah MATRIK.
[7] Sari, F. V. (2019). ANALISIS SENTIMEN PELANGGAN TOKO ONLINE JD.ID. Jurnal SIMETRIS.
[8] Dr.wahidmurni, M. (2017). PEMAPARAN METODE PENELITIAN KUANTITATIF.
[9] Setia Pramana, B. Y. (2018). DATA MINING dengan R Konsep serta implementasi. bogor : IN MEDIA.
Yonathan Sari Mahardhika, E. z. (2018). ANALISIS SENTIMEN TERHADAP PEMERINTAHAN JOKO WIDODO PADA MEDIA SOSIAL TWITTER MENGGUNAKAN ALGORITMA NAIVE BAYES CLASISIFIER. posiding SINTAK.
[10] Hartoko, A. (2019) Rahasia cepat tenar dan dapat duit lewat youtube. jakarta: PT Elex Media Komputindo.
[11] Purbo, O. W. (2019) TEXT MINING ANALISIS MEDSOS KEKUATAN BRAND & INTELEJEN DI INTERNET. I,1st Publ. Edited by A. [12] A. Christian. Yogyakarta: ANDI (Anggota IKAPI).
[13] Suntoro, J. (2019) Data mining algoritma dan implementasi dengan pemrograman php. [14] jakarta: PT Elex Media Komputindo.
Suyanto (2017) DATA MINING UNTUK KLASIFIKASI DAN KLASTERISASI DATA. Bandung: INFORMATIKA Bandung.
[15] deni, n. (2019). implementasi algoritma naive bayes pada data set hepatitis menggunakan rapidminer. paradigma jurnal komputer dan informatika .
[16] A. Syaputra, “Aplikasi E-Kelurahan Untuk Peningkatan Pelayanan Administrasi Dalam Mendukung Penerapan E-Government,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 20, no. 2, pp. 379–388, 2021.