ALGORITMA K-MEANS UNTUK MELIHAT PENULARAN TERTINGGI VIRUS COVID-19 DISELURUH PROVINSI INDONESIA Data Mining; Clusterisasi; Algoritma K-Means; Covid-19.

Main Article Content

Nurahman Nurahman
Diana Dwi Aulia

Abstract

Abstract: The Corona virus or Covid-19 disease began to occur in 2019 until now in 2021. Where the cause of this infectious disease is the Corona Virus. One of the symptoms caused by this viral infection is respiratory problems. The virus in the spread or transmission is classified as very fast. This makes every country, especially Indonesia, where every region has been exposed to Covid-19, which has caused many cases of death, and several impacts, such as the impact on the economy, work, education, and other impacts. With the large spread of the Corona virus in regions or regions in Indonesia, it is necessary to group several parts of Indonesia. Therefore, to make it easier to group a region in Indonesia, in this study a data mining system was used to process large amounts of data by implementing the Clustering Algorithm using the K-Means method. The datasets obtained by researchers without class labels will be processed with the K-Means Algorithm to facilitate data processing to produce the desired goals. The purpose of this research is to see which province has the highest transmission of Covid-19 in Indonesia.

Article Details

How to Cite
Nurahman, N., & Dwi Aulia, D. (2021). ALGORITMA K-MEANS UNTUK MELIHAT PENULARAN TERTINGGI VIRUS COVID-19 DISELURUH PROVINSI INDONESIA. JURNAL ILMIAH BETRIK : Besemah Teknologi Informasi Dan Komputer, 12(2), 162-168. https://doi.org/10.36050/betrik.v12i2.331
Section
Articles

References

Asroni, A., Fitri, H., & Prasetyo, E. (2018). Penerapan Metode Clustering dengan Algoritma K-Means pada Pengelompokkan Data Calon Mahasiswa Baru di Universitas Muhammadiyah Yogyakarta (Studi Kasus: Fakultas Kedokteran dan Ilmu Kesehatan, dan Fakultas Ilmu Sosial dan Ilmu Politik). Semesta Teknika, 21(1). https://doi.org/10.18196/st.211211
Atyanto, D. B., ER, M., & Soelaiman, R. (2011). Customer Profiling dengan Menggunakan K-Means Clustering untuk Mendukung Pengambilan Keputusan Strategis di PT. Pelabuhan Indonesia III (Persero). Prosiding Seminar Nasional Manajemen Teknologi XIV.
Darmansah, D. D., & Wardani, N. W. (2021). Analisis Pesebaran Penularan Virus Corona di Provinsi Jawa Tengah Menggunakan Metode K-Means Clustering. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 8(1). https://doi.org/10.35957/jatisi.v8i1.590
Gunawan, C. (2020). Anomali COVID-19 : Dampak Positif Virus Corona Untuk Dunia (M. Archi (ed.)). CV IRDH.
Hablum, R. J., Khairan, A., & Rosihan, R. (2019). Clustering Hasil Tangkap Ikan Di Pelabuhan Perikanan Nusantara (PPN) Ternate Menggunakan Algoritma K-Means. JIKO (Jurnal Informatika Dan Komputer), 2(1), 26–33. http://ejournal.unkhair.ac.id/index.php/jiko/article/view/1053
Muhammad, A. F. (2015). Klasterisasi Proses Seleksi Pemain Menggunakan Algoritma K-Means (Study Kasus : Tim Hockey Kabupaten Kendal). Jurusan Teknik Informatika FIK UDINUS.
Nengsih, W. (2017). K-Means Analysis Klasterisasi Kasus HIV/AIDS di Indonesia. Jurnal Aksara Komputer Terapan, February.
Pramesti, D. F., Lahan, Tanzil Furqon, M., & Dewi, C. (2017). Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data Potensi Kebakaran Hutan/Lahan Berdasarkan Persebaran Titik Panas(Hotspot). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 1(9).