IDENTIFIKASI WAJAH UNTUK MEMBUKA PINTU MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK

Main Article Content

Muhamad Irsan
Wahyu Abiyoto
Dadang Sujana

Abstract

In this face identification, the researcher feels the lack of effectiveness for access to doors that still use fingerprints. With this kind of identification, it will be straightforward to prevent theft. Face identification is a process where we know someone by looking at their face. In face identification for door access using the convolutional neural network method and Library, Open Computer Vision using the Python programming language and this was made using several components, namely a 5mp camera as face identification, Raspberry pi3 as a microprocessor, LCD monitor, ULN 2003 driver and Stepper motor as a tool. Automatic door mover, Push button to move the door from the inside. This tool can detect faces by verifying faces with the closest distance of 50 meters to 150 meters and to an accuracy of 83.20% with a period of 3 seconds to move the automatic sliding door by receiving facial data from the raspberry to the 2003 ULN driver to move the stepper motor with Lay 5 seconds, rotate clockwise and turn around again counterclockwise

Article Details

How to Cite
Irsan, M., Wahyu Abiyoto, & Dadang Sujana. (2021). IDENTIFIKASI WAJAH UNTUK MEMBUKA PINTU MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK . JURNAL ILMIAH BETRIK : Besemah Teknologi Informasi Dan Komputer, 12(3), 195-201. https://doi.org/10.36050/betrik.v12i3.341
Section
Articles

References

arsal, M., Agus Wardijono, B., & Anggraini, D. (2020). Face Recognition Untuk Akses Pegawai Bank Menggunakan Deep Learning Dengan Metode Cnn. Jurnal Nasional Teknologi Dan Sistem Informasi, 6(1), 55–63. Https://Doi.Org/10.25077/Teknosi.V6i1.2020.55-63
Budiarto, R. (2018). Kinerja Algoritme Pengenalan Wajah Untuk Sistem Penguncian Pintu Otomatis Menggunakan Raspberry-Pi. Khazanah Informatika: Jurnal Ilmu Komputer Dan Informatika, 3(2), 80. Https://Doi.Org/10.23917/Khif.V3i2.5160
Herlambang, M. (N.D.). Deep Learning_ Convolutional Neural Networks - Artificial Intelligence And Data Science.
Imam Jurjawi. (2020). Implementasi Pengenalan Wajah Secara Real Time Untuk Sistem Absensi Menggunakan Metode Pembelajaran Deep Learning Dengan Pustaka Open Cv (Computer Vision).
Kim, P. (2017). MATLAB Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence. In Library of Congress Control Number.
Lazaro, A., Buliali, J. L., & Amaliah, B. (2017). Deteksi Jenis Kendaraan di Jalan Menggunakan OpenCV. Jurnal Teknik ITS, 6(2). https://doi.org/10.12962/j23373539.v6i2.23175
Manfaluthy, MauludiManfaluthy, M., Wilyanti, S., & Lasito, Y. (2019). Face Recognition Berbasis Raspberry Pi Pada Keamanan Pintu Otomatis. 4(2502), 133–140. https://doi.org/10.22236/teknoka.v, Wilyanti, S., & Lasito, Y. (2019). Face Recognition Berbasis Raspberry Pi Pada Keamanan Pintu Otomatis. 4(2502), 133–140. https://doi.org/10.22236/teknoka.v
Muchtar, H., & Apriadi, R. (2019). Implementasi Pengenalan Wajah Pada Sistem Penguncian Rumah Dengan Metode Template Matching Menggunakan Open Source Computer Vision Library (Opencv). RESISTOR (ElektRonika KEndali TelekomunikaSI Tenaga LiSTrik KOmputeR), 2(1), 39. https://doi.org/10.24853/resistor.2.1.39-42
Nurhikmat, T. (2018). Implementasi Deep Learning Untuk Image Classification Menggunakan Algoritma Convolutional Neural Network (Cnn) Pada Citra Wayang Golek. 121.

DB Error: Unknown column 'Array' in 'where clause'