ANALISIS PENGELOMPOKAN PENENTUAN JURUSAN SISWA SMA MENGGUNAKAN METODE K-MEANS CLUSTERING
Main Article Content
Abstract
: The 2013 school year curriculum for admission of new students has undergone changes where the determination of the majors is usually done at the time of advancement of class XI, now prospective students are required to choose a major at the time of entering high school registration. Determining the department of SMA Negeri 21 Bandung using student report cards grades from semester 1 to 5. This of course will take a long time in the process of determining the majors, as well as the curriculum section which still uses manual methods to make mistakes in determining majors. The cause of the students being wrong in determining the major is not recognizing the characteristics of each department, not recognizing their interests and talents. Based on the problems that have been described, a solution can be proposed to group the direction using the K-Means Clustering method. This method is used to classify and analyze data into machine learning and produce information from a data analysis. The purpose of this study is to facilitate the curriculum section in determining majors and there are no mistakes for students in administering majors. The results of grouping in determining the majors of SMA Negeri 21 Bandung using the K-Means method get 3 clusters. Cluster_0 5 students do not enter 2 majors, cluster_1 142 social studies students and cluster_2 177 science students and this greatly facilitates the curriculum in determining majors. Solution for the part of SMA Negeri 21 Bandung to be more careful in determining the majors.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
[2] P. Teknik, I. Universitas, and D. Nuswantoro, “Penentuan Jurusan Siswa Sekolah Menengah Atas Disesuaikan Dengan Minat Siswa Menggunakan Algoritma Fuzzy C-Means” vol. 13, pp. 57–68, 2017.
[3] C. Purnamaningsih and A. Aziz, “Pemanfaatan Metode K-Means Clustering dalam Penentuan Penjurusan Siswa SMA,” vol. 3, no. 1, pp. 27–33, 2014.
[4] P. Smk, N. Kota, J. Tandy, and S. Assegaff, “Analisis Dan Perancangan Clustering Siswa Baru Menggunakan Metode K-Means Pada Smk Negeri 1 Kota Jambi,” vol. 4, no. 4, pp. 389–399, 2019.
[5] N. Putu, E. Merliana, and A. J. Santoso, “Analisa Penentuan Jumlah Cluster Terbaik pada Metode K-Means,” pp. 978–979.
[6] S. Muklis, “Sistem Pendukung Keputusan Minat Pemilihan Jurusan Sma Dengan Metode K-Means Cluster Analysis,” pp. 6–8, 2015.
[7] Y. Syahra, “Penerapan Data Mining Dalam Pengelompokkan Data Nilai Siswa Untuk Penentuan Jurusan Siswa Pada SMA Tamora Menggunakan Algoritma K-Means Clustering,” vol. 17, no. SAINTIKOM, pp. 228–233, 2018.
[8] T. Syahputra, J. Halim, and E. P. Sintho, “Penerapan Data Mining Dalam Menentukan Pilihan Jurusan Bidang Studi Sma Menggunakan Metode Clustering Dengan Teknik Single Linkage,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. IV, no. 2, pp. 205–208, 2018.