Main Article Content

Dadang Iskandar Mulyana


One of the leading commodities in Indonesia is shrimp cultivation and several entrepreneurs make this shrimp as an export commodity such as the Asian region, European Units and even America. Various types exist in Indonesia, vaname shrimp is one of them that has a fairly high economic value, besides that there are also white shrimp and tiger shrimp which are quite a lot of market enthusiasts. Vannamei shrimp is also often known by another name, namely white shrimp. Some of the advantages of vaname shrimp are high adaptation to weather, region, and water types which can usually affect the growth and development of shrimp. The advantage of high adaptability can be an added value for pond farmers as a cultivation option, because nowadays frequent and rapid changes in weather affect the existing ecosystem more or less. However, the high interest in vaname shrimp cultivation is not matched by equal distribution of shrimp feed distribution channels and marketing. This is sometimes the main factor in the uncontrollable price of shrimp and even difficult to predict. Sometimes the price of shrimp from collectors is too low or too high which has the potential to cause price games. Therefore, it is necessary to conduct a study related to the price prediction of vaname shrimp so that it can be used as an ideal or not ideal determinant of the price of vaname shrimp. This study uses the Linear Regression Algorithm which is a statistical data that can predict something in the future using current and past data, with the method of measuring the accuracy of RMSE and MAE with the results of this study respectively the RMSE 1932587 and results MAE -0.01.

Article Details

How to Cite
Mulyana, D. I., & Marjuki. (2022). OPTIMASI PREDIKSI HARGA UDANG VANAME DENGAN METODE RMSE DAN MAE DALAM ALGORITMA REGRESI LINIER. JURNAL ILMIAH BETRIK : Besemah Teknologi Informasi Dan Komputer, 13(1), 50-58. https://doi.org/10.36050/betrik.v13i1.439


[1] Fauzi, R. M., & Mulyana, D. I. (2021). Implementasi Data Mining Menggunakan Metode Least Square untuk Memprediksi Penjualan Lampu LED pada PT . Sumber Dinamika Solusitama. Jurnal Sosial Dan Teknologi ( SOSTECH ), 1(8), 907–919.
[2] Hijriani, A., Muludi, K., & Andini, E. A. (2016). Penyajian Hasil Prediksi Pemakaian Air Bersih Pdam Informasi Geofrafis. Jurnal Informatika, 11(2), 37–42.
[3] Perairan, J. B., & Darmaga, K. (2005). Tingkat Konsumsi Oksigen Udang Vaname (Litopenaeus Vannamei) Dan Model Pengelolaan Oksigen Pada Tambak Intensif. 4(1), 63–67.
[4] Riani, H., Rostika, R., & Lili, W. (2012). Efek Pengurangan Pakan Terhadap Pertumbuhan Udang Vaname (Litopenaeus Vannamei) Pl - 21 Yang Diberi Bioflok. Jurnal Perikanan Kelautan, 3(3), 207–211.
[5] Rosyidah, L., Yusuf, R., & Deswati, H. (2020). Sistem Distribusi Udang Vaname Di Kabupaten Banyuwangi, Provinsi Jawa Timur. Buletin Ilmiah “Marina” Sosial Ekonomi Kelautan Dan Perikanan, 6(1), 51–60. Http://Ejournal-Balitbang.Kkp.Go.Id/Index.Php/Mra/Article/View/8540
[6] Rusyida, W. Y., & Pratama, V. Y. (2020). Prediksi Harga Saham Garuda Indonesia Di Tengah Pandemi Covid-19 Menggunakan Metode Arima. Square : Journal Of Mathematics And Mathematics Education, 2(1), 73. Https://Doi.Org/10.21580/Square.2020.2.1.5626

[7] Saiful, A. (2021). Prediksi Harga Rumah Menggunakan Web Scrapping Dan Machine Learning Dengan Algoritma Linear Regression. Jatisi (Jurnal Teknik Informatika Dan Sistem Informasi), 8(1), 41–50. Https://Doi.Org/10.35957/Jatisi.V8i1.701
[8] Suryanto, A. A. (2019). Penerapan Metode Mean Absolute Error (Mea) Dalam Algoritma Regresi Linear Untuk Prediksi Produksi Padi. Saintekbu, 11(1), 78–83. Https://Doi.Org/10.32764/Saintekbu.V11i1.298