PREDIKSI FINANCIAL DISTRESS PERUSAHAAN FOOD AND BEVERAGE MENGGUNAKAN METODE NAIVE BEYES

Main Article Content

ROSDIANA ROSDIANA
Ruli Herdiana
Ryan Hmonangan
Umi Hayati
Tati Suprapti

Abstract

The company uses the theory of going concern where the company is considered able to maintain its business for a long period of time, with the understanding that the company will not experience bankruptcy in a short period of time (Listantri & Mudjiyanti, 2016) but it cannot always be achieved because a company can experience financial distress that can cause bankruptcy. Based on the type of data and analysis,  This research uses quantitative descriptive research methods in analyzing data, because with this approach will be known the data in real terms that are shown with numbers and the truth can be accounted for. Based on the results of the analysis in the research conducted, the results of the analysis were obtained quickly and accurately, from the tests conducted by comparing training data with testing data using rapid miner support applications obtained an accuracy rate of 95.56%. The process of data mining with the naive bayes method utilizes training data to generate the probability of each criterion for different classes, so that the probability values of these criteria can be optimized for financial distress analysis of food and beverage companies

Article Details

How to Cite
ROSDIANA, R., Ruli Herdiana, Ryan Hmonangan, Umi Hayati, & Tati Suprapti. (2022). PREDIKSI FINANCIAL DISTRESS PERUSAHAAN FOOD AND BEVERAGE MENGGUNAKAN METODE NAIVE BEYES. JURNAL ILMIAH BETRIK : Besemah Teknologi Informasi Dan Komputer, 13(2), 208-220. https://doi.org/10.36050/betrik.v13i2.461
Section
Articles

References

D. A. K. Irfan Nurdiyanto, Odi Nurdiawan, Nining Rahaningsih, Ade Irfma Purnamasari, “Penentuan Keputusan Pemberian Pinjaman Kredit Menggunakan Algoritma C.45,” J. Data Sci. dan Inform., vol. 1, no. 1, pp. 16–20, 2021.
A. S. kaslani, Ade Irma Purnamasari, “Pengembangan Media Pembelajaran Interaktif Berbasis Android Pada Materi Hidrokarbon,” J. ICT Infirm. Comun. Technol., vol. 5, no. 1, p. 37, 2021, doi: 10.23887/jjpk.v5i1.33520.
I. A. Putri Saadah, Odi Nurdiawan , Dian Ade Kurnia, Dita Rizki Amalia, “Klasifikasi Penerima Beasiswa Dengan Menggunakan Algoritma,” J. DATA Sci. Inform. ( JDSI ), vol. 1, no. 1, pp. 11–15, 2021.
I. A. Erliyana, Odi Nurdiawan, Nining R, Ade Irma Purnamasari, “Klasifikasi Penerima Beasiswa Dengan Menggunakan Algoritma,” J. DATA Sci. Inform. ( JDSI ), vol. 1, no. 1, pp. 11–15, 2021.
D. Anggarwati, O. Nurdiawan, I. Ali, and D. A. Kurnia, “Penerapan Algoritma K-Means Dalam Prediksi Penjualan,” J. DATA Sci. Inform. ( JDSI ), vol. 1, no. 2, pp. 58–62, 2021.
T. Hadi, N. Suarna, A. I. Purnamasari, O. Nurdiawan, and S. Anwar, “Game Edukasi Mengenal Mata Uang Indonesia ‘ Rupiah ’ Untuk Pengetahuan Dasar Anak-Anak Berbasis Android,” JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 3, pp. 89–98, 2021, doi: 10.30865/jurikom.v8i3.3609.
O. Nurdiawan, R. Herdiana, and S. Anwar, “Komparasi Algoritma Naïve Bayes dan Algoritma K-Nearst Neighbor terhadap Evaluasi Pembalajaran Daring,” Smatika J., vol. 11, no. 02, pp. 126–135, 2021, doi: 10.32664/smatika.v11i02.621.
A. rinaldi D. Subandi, Husein Odi Nuriawan, “Augmented Reality dalam Mendeteksi Produk Rotan menggunakan Metode Multimedia Development Life Cycle ( MDLC ),” Means (Media Inf. Anal. dan Sist., vol. 6, no. 2, pp. 135–141, 2021.
H. S. Mr Agis, O. Nurdiawan, G. Dwilestari, and N. Suarna, “Sistem Informasi Penjualan Motor Bekas Berbasis Android Untuk Menigkatkan Penjualan di Mokascirebon.com,” JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, pp. 205–212, 2021, doi: 10.30865/jurikom.v8i6.3629.
D. Teguh, A. Ade, B. Riyan, T. Hartati, D. R. Amalia, and O. Nurdiawan, “Smart School Sebagai Sarana Informasi Sekolah di SDIT Ibnu Khaldun Cirebon,” JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, pp. 284–293, 2021, doi: 10.30865/jurikom.v8i6.3681.
I. Kepuasan, P. Informa, A. Febriyani, G. K. Prayoga, and O. Nurdiawan, “Index Kepuasan Pelanggan Informa dengan Menggunakan Algoritma C.45,” JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, pp. 330–335, 2021, doi: 10.30865/jurikom.v8i6.3686.
K. S. H. K. Al Atros, A. R. Padri, O. Nurdiawan, A. Faqih, and S. Anwar, “Model Klasifikasi Analisis Kepuasan Pengguna Perpustakaan Online Menggunakan K-Means dan Decission Tree,” JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, pp. 323–329, 2022, doi: 10.30865/jurikom.v8i6.3680.
F. Febriansyah, R. Nining, A. I. Purnamasari, O. Nurdiawan, and S. Anwar, “Pengenalan Teknologi Android Game Edukasi Belajar Aksara Sunda untuk Meningkatkan Pengetahuan,” JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, pp. 336–344, 2021, doi: 10.30865/jurikom.v8i6.3676.
E. S. Nugraha, A. R. Padri, O. Nurdiawan, A. Faqih, and S. Anwar, “Implementasi Aplikasi Pengaduan Masyarakat Berbasis Android Pada Gedung DPRD,” JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, pp. 360–366, 2021, doi: 10.30865/jurikom.v8i6.3679.
R. Nurcholis, A. I. Purnamasari, A. R. Dikananda, O. Nurdiawan, and S. Anwar, “Game Edukasi Pengenalan Huruf Hiragana Untuk Meningkatkan Kemampuan Berbahasa Jepang,” Build. Informatics, Technol. Sci., vol. 3, no. 3, pp. 338–345, 2021, doi: 10.47065/bits.v3i3.1091.
H. Putri, A. I. Purnamasari, A. R. Dikananda, O. Nurdiawan, and S. Anwar, “Penerima Manfaat Bantuan Non Tunai Kartu Keluarga Sejahtera Menggunakan Metode NAÏVE BAYES dan KNN,” Build. Informatics, Technol. Sci., vol. 3, no. 3, pp. 331–337, 2021, doi: 10.47065/bits.v3i3.1093.
H. Putri, A. I. Purnamasari, A. R. Dikananda, O. Nurdiawan, and S. Anwar, “Penerima Manfaat Bantuan Non Tunai Kartu Keluarga Sejahtera Menggunakan Metode NAÏVE BAYES dan KNN,” Build. Informatics, Technol. Sci., vol. 3, no. 3, pp. 331–337, 2021, doi: 10.47065/bits.v3i3.1093.
K. S. H. K. Al Atros, A. R. Padri, O. Nurdiawan, A. Faqih, and S. Anwar, “Model Klasifikasi Analisis Kepuasan Pengguna Perpustakaan Online Menggunakan K-Means dan Decission Tree,” JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, pp. 323–329, 2022, doi: 10.30865/jurikom.v8i6.3680.

DB Error: Unknown column 'Array' in 'where clause'