KLASIFIKASI MAMALIA MENGGUNAKAN EXTREME GRADIENT BOOSTING BERDASARKAN FITUR HISTOGRAM OF ORIENTED GRADIENT

Main Article Content

Yohannes Yohannes
Johannes Petrus

Abstract

Mammals are one type of animal that has many characteristics and characteristics. The shape of the face in each type of mammal has a similar shape. The faces of mammals in the form of frontal images are a challenge in image classification. In this study, the Histogram of Oriented Gradient (HOG) is used as a feature of the facial shape of mammals. HOG is used as a strengthening feature in the classification process using the eXtreme Gradient Boosting (XGBoost) method. The test was carried out using a dataset of frontal facial imagery of mammals consisting of 15 species. The results of the tests show that the XGBoost method with the HOG feature is able to provide better classification results for mammals than without the HOG feature. This is indicated by an increase in the value of precision, recall, and f1-score on XGBoost with the HOG feature which is almost twice as high as XGBoost without the HOG feature.

Article Details

How to Cite
Yohannes, Y., & Petrus, J. (2022). KLASIFIKASI MAMALIA MENGGUNAKAN EXTREME GRADIENT BOOSTING BERDASARKAN FITUR HISTOGRAM OF ORIENTED GRADIENT. JURNAL ILMIAH BETRIK : Besemah Teknologi Informasi Dan Komputer, 13(3), 363-370. https://doi.org/10.36050/betrik.v13i3.589
Section
Articles

References

[1] M. N. Alli and S. Viriri, “Animal identification based on footprint recognition,” IEEE Int. Conf. Adapt. Sci. Technol. ICAST, 2013, doi: 10.1109/ICASTech.2013.6707488.
[2] S. Taheri and Ö. Toygar, “Animal classification using facial images with score-level fusion,” IET Comput. Vis., vol. 12, no. 5, pp. 679–685, 2018, doi: 10.1049/iet-cvi.2017.0079.
[3] M. E. Al Rivan and Y. Yohannes, “Klasifikasi Mamalia Berdasarkan Bentuk Wajah Dengan K-NN Menggunakan Fitur CAS Dan HOG,” J. Tek. Inform. dan Sist. Inf., vol. 5, no. 2, pp. 173–180, 2019.
[4] Y. Yohannes, Y. P. Sari, and I. Feristyani, “Klasifikasi Wajah Hewan Mamalia Tampak Depan Menggunakan k-Nearest Neighbor Dengan Ekstraksi Fitur HOG,” J. Tek. Inform. dan Sist. Inf., vol. 5, no. 1, pp. 84–97, 2019, doi: 10.28932/jutisi.v5i1.1584.
[5] Z. Cao, J. C. Principe, B. Ouyang, F. Dalgleish, and A. Vuorenkoski, “Marine Animal Classification Using Combined CNN and Hand-designed Image Features,” Ocean. 2015 - MTS/IEEE Washingt., pp. 2–7, 2015.
[6] G. Kunapuli, Ensemble Methods for Machine Learning Version 6. The MathWorks, Inc., 2022.
[7] T. C. Nokeri, Data Science Solutions with Python. 2022. [Online]. Available: https://link.springer.com/10.1007/978-1-4842-7762-1
[8] G. Kyriakides and K. G. Margaritis, Hands-On Ensemble Learning with Python. 2019.
[9] Y. Yohannes and M. E. Al Rivan, “Penggunaan Global Contrast Saliency dan Histogram of Oriented Gradient Sebagai Fitur untuk Klasifikasi Jenis Hewan Mamalia,” Petir, vol. 13, no. 1, pp. 80–85, 2020, doi: 10.33322/petir.v13i1.908.
[10] Y. Jiang, G. Tong, H. Yin, and N. Xiong, “A Pedestrian Detection Method Based on Genetic Algorithm for Optimize XGBoost Training Parameters,” IEEE Access, vol. 7, pp. 118310–118321, 2019, doi: 10.1109/ACCESS.2019.2936454.
[11] Z. Si and S. Zhu, “Learning Hybrid Image Templates (HIT) by Information Projection,” IEEE Trans. Pattern Anal. Mach. Intell., pp. 1354–1367, 2012.
[12] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection,” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 2005, vol. 1, pp. 886–893. doi: 10.1109/CVPR.2005.177.
[13] L. Wang, D. Zhou, H. Zhang, W. Zhang, and J. Chen, “Application of Relative Entropy and Gradient Boosting Decision Tree to Fault Prognosis in Electronic Circuits,” Symmetry (Basel)., vol. 10, no. 10, 2018, doi: 10.3390/sym10100495.
[14] Y. Chen, X. Wang, Y. Jung, V. Abedi, R. Zand, M. Bikak, and M. Adibuzzaman, “Classification of short single-lead electrocardiograms (ECGs) for atrial fibrillation detection using piecewise linear spline and XGBoost,” Physiol. Meas., vol. 39, no. 10, 2018, doi: 10.1088/1361-6579/aadf0f.
[15] T. Chen and C. Guestrin, “XGBoost : A Scalable Tree Boosting System,” Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 785–794, 2016, doi: 10.1145/2939672.2939785.
[16] R. Guo, Z. Zhao, T. Wang, G. Liu, J. Zhao, and D. Gao, “Degradation State Recognition of Piston Pump Based on ICEEMDAN and XGBoost,” Appl. Sci., vol. 10, no. 18, pp. 1–17, 2020, doi: 10.3390/app10186593.